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ABSTRACT
Data in the form of approximately 5 million No Limit Texas
Hold’em hand histories collected from the online poker web-
site PokerStars.com is used to model a game playing social
network. Each player represents a node in the network, and
weighted, directed edges represent the flow of money from
the source to the target node, where the weight is equal to
the amount of money transferred, normalized by stakes.

Properties of the network structure such as degree distribu-
tion and weighted clustering coefficient are examined across
different levels of stakes, ranging from $100 buy-in games
(blinds of $.50/$1) to $1,000 buy-in games (blinds of $5/$10).
We also explore the evolution of the network over time, cre-
ating probabilistic models for node arrivals and edge initi-
ations. These models are governed in part by the unique
set of incentives for edge creation, where each node seeks
inward edges, but tries to avoid outward edges. We noticed
several interesting patterns common to all networks across
stakes, and attempt to utilize that information in our prob-
abilistic model of edge generation. Despite our best efforts,
the standard model of preferential attachment observed in
class still performs best.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; J.4 [Social
and Behavioral Sciences]: Economics

General Terms
social and information network analysis, online poker

Keywords
network analysis, poker

1. INTRODUCTION
Of all the games played in a casino, poker is the most social.
Rather than playing against the house, the game is played
against a table full of other players. In 2003, the world of
online poker exploded and millions of people flocked to web-
sites such as PartyPoker.com and PokerStars.com to play
the card game on the Internet.

When thinking of poker as an online network, there are sev-
eral factors that distinguish it from more traditional net-
works such as Facebook or MySpace. For example, people
playing online poker can choose the level of stakes they play
for. Those who simply play for fun may choose to play for
lower stakes, while those playing more seriously, or perhaps
even professionally, might wish to play for higher stakes.
Different levels attract different player pools, and thus we
might expect to observe differences in their network struc-
tures. Also, edges are signed and weighted, and the creation
of edges is adversarial in nature. Players are incentivized
to generate inward pointing edges, which represents win-
ning money, and disincentivized to generate outward point-
ing edges, which represents losing money.

2. ANALYSIS
Our analysis of the world of online poker was divided into
three parts: collecting data, developing an understanding of
the networks and their structures, and building a model for
their evolution.

2.1 Data Collection
All hands of poker played on reputable websites are publicly
viewable, and several websites offer datamining services to
players. For a fee, a player can download hundreds of thou-
sands of hand histories from websites such as HandHQ.com.
These hand histories can be stored in a database, and serve
as information on an opponent’s betting tendencies and in-
clinations. We contacted HandHQ customer support and
requested a large sample of hand histories for research pur-
poses. HandHQ replied and sent us approximately 5 million
hand histories from PokerStars with obfuscated unique iden-
tifiers in place of usernames[2]. The histories contain hands
played at $.5/$1, $1/$2, $3/$6 and $5/$10 stakes.

We used Python to process the hand histories and extract
relevant information such as players, stakes, time and hand
outcomes. Each of our hand results are normalized by the
level of stakes played. In our data, we use the big blind as



our currency unit, which is the number after the forward
slash, e.g., one big blind is $1 at $.5/$1 stakes.

2.2 Network Structure
The classical notions of degree and clustering of nodes in a
network need adaptation to properly describe a graph with
weighted and directed edges.

2.2.1 Degree Distribution
Each node in our network has inward pointing edges and
outward pointing edges. Each inward pointing edge repre-
sents money flowing inward, while an outward pointing edge
represents money flowing outward. The total in degree of an
edge is the sum of all the weights of inward pointing edges,
and is equal to the gross amount of money won by that
player. Likewise, the total out degree of an edge is the sum
of all the weights of outward pointing edges, and is equal to
the gross amount of money lost by that player. The net de-
gree of an edge is total in degree minus total out degree, and
represents a player’s net winnings or losses. Losing players
have a negative net degree.

Figure 1: Weighted degree distributions across
stakes. Right of origin is winning population, left
is losing population.

Each of the stakes looks to follow a power law distribution,
both for the populations of winners and losers. Maximum
likelihood estimation of the power law exponent yields an es-
timate of α = 1.3 across all levels of stakes, for both winners
and losers.

2.2.2 Clustering
The clustering coefficient measures the tendency of nodes
within a network to form local structures. The standard
formulation of the clustering coefficient of a node takes into
account only the existence of edges between nodes, but this

does not provide a complete picture of the interactions in our
network. Instead, we use a weighted generalization of the
clustering coefficient proposed by Zhang et al (2005) [5][4].

Ci =

∑
j,k ŵijŵikŵjk∑

j 6=k ŵjkŵik

Ci is the clustering if node i, j and k are neighbors of i, and
ŵi,j is the weight of the edge between nodes i and j, normal-
ized by the weight of the largest edge in the network. This
measure of clustering is higher for nodes in neighborhoods
with very heavy weights, so nodes in communities that play
many hands for large amounts have larger clustering coeffi-
cients. Plotting the clustering coefficient against net degree
at different stakes, we can observe what types of players
reside at those levels.

Figure 2: Weighted clustering against net degree.
Horizontal black line is average clustering, vertical
black line is zero. Left of the vertical line are losing
players, to the right are winning players.

Figure 2 plots log(clustering) against net degree for each
node at the $1/$2 stakes. Nodes in the top left quadrant
are those with high clustering coefficient and negative net
degree, i.e., players who play a lot, and consistently lose
money. Note in the figure that there is a rather large com-
munity of dedicated losing players. Plots for each of these
stakes reveal that $1/$2 games have by far the most “fish”,
and as one moves up the ladder in stakes, the games be-
come tougher, with fewer people consistently losing so much
money. At $3/$6, only 3 players out of the player pool of
6,342 won or lost in excess of 2,000 big blinds. As shown in
the plot above, a healthy population exists on both sides of
this interval at $1/$2.



2.2.3 Pagerank
A node’s Pagerank score provides another measure of the
influence or connectedness of a point. A node with a high
Pagerank score has many incoming links from other nodes
with high Pagerank scores, thus one could reasonably ex-
pect high Pagerank nodes to form communities of “regulars”
who play many hands together. We hypothesize that these
regulars are often superior in skill to casual players at their
stakes, and a high Pagerank score should correlate posivi-
tively with net degree. Plotting net degree against Pagerank
score and fitting a simple least squares regression confirms
this is the case.

Figure 3: Net degree versus Pagerank score for
$2/$4 stakes. There is a clear positive correlation.
For $2/$4, the regression coefficient on Pagerank
score is statistically significant well beyond the .001
level. β̂1 = 454901, se(β̂1) = 8299, with a t value of
54.81

We observe this phenomenon at every level. Even at $3/$6

where the correlation is the weakest, we still observe β̂1 =
69650, se(β̂1) = 5190, with a t value of 13.48 on the regres-
sion coefficient for Pagerank score, indicating there is a def-
inite positive correlation between Pagerank and net degree.
This is evidence in support of our hypothesis that nodes with
high Pagerank correspond to players with a higher degree of
poker skill.

2.3 Probabilistic Model for Network Evolution
We next sought to use the poker hand data to understand
the microevolution of the poker social network. The goal was
to find a generalizable probabalistic model with maximum
likelihood of the time ordered hands. Previous work has
been done [1] applying preferential attachment models [3]
to the social networks of FLICKR (flickr.com), DELICIOUS
(del.icio.us), YAHOO! ANSWERS (answers.yahoo.com), and
LINKEDIN (linkedin.com) with success. However, in each

of these cases, the creation of an edge comes at no explicit
cost to either party. In a poker network, the interactions
involve one player losing money to another, or winning from
another, and thus the criterion for choosing who to inter-
act with differ from the previously mentioned networks. We
investigated ways of capturing this difference in the prefer-
ential attachment model.

The model of preferential attachment differs slightly from
those used in J. Leskovec, et. al, in that a new interac-
tion could be between neighbors, rather than solely between
nodes that do not already have an edge between them. The
model is as follows: node A is selected uniformly at random
from the graph. With probability q, node B is chosen uni-
formly from the rest of the nodes in the total network. With
probability 1 − q, a neighbor of A is selected uniformly at
random. With probability p, this neighbor is chosen as node
B, and with probability 1 − p, node B is chosen uniformly
from the neighbors of the neighbor of A, excluding node A.
The direction of the edge between nodes A and B is then
chosen uniformly, with probabilities 1/2 for each direction.
The model is summarized in figure 4.

Figure 4: Probability model for network evolution

We then modified this preferential attachment model to no
longer select the neighbors uniformly. Instead, the neighbors
were weighted according to the net edge between node A and
the neighbor. So if node A previously lost a large amount of
money to neighbor C, then node A is unlikely to play against
neighbor C again.

w(C) = exp(Xab)

Xab = net previous profit or loss of node A from node B

These weights are used to form a new distribution for which
the neighbor of node A is chosen. The same process is used
when selecting the neighbor of neighbors, as the incentives
are assumed to be transitive. If node A lost money to node
B, and node B lost money to node C, then there is a dis-
incentive for node A to play against node B. We found a
much larger log-likelihood for the preferential attachment
with uniform neighbor selection than for the modified, net-
profit neighbor selection. This suggests that our weighting
criterion is not a good choice for encapsulating previous ex-
perience. We then tried to improve the preferential attach-
ment by predicting the edge directions between two nodes
once they have been selected. We did this using the pager-
ank algorithm, generating the scores for nodes A and B.



The pagerank algorithm was selected as regression models
showed that produced scores were positive correlated with
netprofit, the scores intuitively seemed to suggest skill lev-
els, and the algorithm was quickly able to be prototyped and
tested. We used the previously described uniform neighbor
preferential attachment model, but now used the scores to
predict the edge direction instead of using uniform proba-
bility 1/2. The neighbor selection distribution was instead:

p(edge B to A) = scoreA/(scoreA + scoreB)

At each iteration, nodes A and B are selected according to
the original preferential. This model produced a likelihood
that was close, but still consistently worse than the unmod-
ified preferential attachment model. These results held true
at all levels of stakes. The experiments show that our prob-
abilistic model of weighting neighbor selection by netprofit
or weighting edge direction selection by Pagerank do not
provide good results for the poker network evolution. Going
forward, before performing more experiments it would be
most useful to develop a metric that is better able to cap-
ture the desired edge prediction. Our likelihood evaluates
which nodes create the edge and the edge’s direction, but
does not predict the transaction’s magnitude. A probabilis-
tic model that could accurately predict the magnitude of the
win or loss would be preferred in a setting where a player
may lose many hands, but win big on a few to still have
netprofit. Once an agreed upon metric is found, then many
other strategies can be tested for evaluating skill and predict-
ing transactions. One possibility is to use logistic regression
on the edges in the common neighborhood of node A and
node B. Other methods for evaluating a total rank can also
be tested, such that edges tend to point from lower to higher
skill. These parameters could then be used to both predict
edge direction, but also to understand how opponents are
chosen.

3. CONCLUSIONS
Our work in exploring the world of online poker gave us some
interesting insight into the network structures that form
within the community. Although our attempts to model
the microevolution of the network did not produce ideal re-
sults, they still left us with a better understanding of the
problem, and ideas for exploring this topic further.
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